Biological Macromolecule	Elements Ratio	Function	Monomer	Examples
Carbohydrate -ose	CHO 1:2:1	- Short term energy storage - Structure (cell walls & exoskeletons)	Monosaccharide	-Glycogen -Chitin -Cellulose -Glucose fructose galactose -sucrose lactose maltose
Lipids	CHO 1:2:very few	 long term energy storage Insulates body Cushions body organs 	Triglyceride (Glycerol + 3 fatty acids)	Fats, Waxes, Oils, Steroids
Proteins	CHON No ratio	- Transports O ₂ - Structural support - Enzymes (ase) - Receptors (cell membranes) - Defense	Amino Acids (20)	 Hemoglobin Catalase Antibodies Keratin (hair, nails) Actin/Myosin (muscles)
Nucleic Acids	CHONP No ratio	 Instructions for making proteins Genetic stored Genetic info transmitted 	Nucleotide (5-C sugar + phosphate + nitrogen base)	DNA RNA

When testing a macromolecule in a lab setting for identification scientists use the following chemical indicators and compare color of substance in the test tube after the indicator has been added

Carbs

simple sugars

indicator is benedicts solution

(+) result green, yellow, orange, brick red

starch.

indicator is iodine solution

(+) result black or blue

Protein

indicator is biuret solution

(+) result

light purple (lavender)

Lipids (fat)s

indicator is brown paper bag

(+) result

grease spot on paper bag

Compound

Basic components

Reaction

Product

Carbohydrates:

Sugars, starches, glycogen, cellulose

Lipids:

Fats, olls, waxes, cholesterol

Glyoerol + 3 fatty acids with Triglyceride or fat [dehydration]

Proteins:

Enzymes, structural proteins

$$H_2N - C - C \qquad N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C - C - N - C - C \qquad H_2N - C -$$

[demydration] Dipeptide

Nucleic acids:

DNA, RNA

. .